Internet y la ciencia

Con solo una PC y conexión a Internet es posible participar en esfuerzos científicos de alcance global.

Explorar el universo

En el sitio www.galaxyzoo.org puedes ayudar a los astrónomos a explorar el universo. El sitio contiene un cuarto de millón de imágenes obtenidas por un telescopio robótico ( Sloan Digital Sky Survey) y voluntarios pueden ayudar a clasificar las imágenes.

La búsqueda de número primos

 GIMPS provee programas que se pueden usar como screen savers y buscan números primos. Inclusive hay recompensa económica para motivar el desarrollo de esta tecnología a través de EFF Cooperative Computing Awards para el que encuentre primero:

La aritmética de Trachtenberg

Así como Viktor Emil Frankl desarrollo la logoterapia para superar los rigores de los campos de concentración Nazi, Jakow Trachtenberg ocupo su mente en desarrollar un sistema de aritmética mental al verse en la misma situación.

El sistema Trachtenberg de rápido cálculo mental, similar a las matemáticas Védicas, consiste en un conjunto de patrones para realizar operaciones aritméticas. Los algoritmos más importantes son multiplicación,división, y adición. El método también incluye algoritmos especializados para realizar multiplicaciones por números entre 5 y 13.

Multiplicación por 11

Abusando de la notación

(11)a = 11Σai10i =

an10n+1 + [Σj=0n-1(aj+aj+1)10j ]+ a0

Multiplicación por 12

(12)a = 12Σai10i =

an10n+1 + [Σj=0n-1 (aj+2aj+1)10j ]+ 2a0

Multiplicación por 6

Definiendo

bj = aj/2, donde / denota división entera

cj = aj mod 2

tenemos

aj = 2bj + cj

(6)a = (10/2)Σai10i  + Σai10i =

Σbi10i+1 + Σ(ai + 5ci)10i

bn10n+1 + [Σj=1n(aj + 5cj + bj-1)10j ]+ (a0 + 5c0)

Expresando el algoritmo en python:

def x6(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(digit + odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 7

De manera similar al caso anterior:

aj = 2bj + cj

(7)a = (10/2)Σai10i  + Σ2ai10i =

Σbi10i+1 + Σ(2ai + 5ci)10i

bn10n+1 + [Σj=1n(2aj + 5cj + bj-1)10j ]+ (a0 + 5c0)

Expresando el algoritmo en python:

def x7(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(2*digit + odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 5

De manera similar al caso anterior:

aj = 2bj + cj

(5)a = (10/2)Σai10i   =

Σbi10i+1 + Σ(5ci)10i

bn 10n+1 + [Σj=1n(5cj + bj-1)10j ]+ (5c0)

Expresando el algoritmo en python:

def x5(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 9

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

tenemos

(9)a = 10a –a =

10a –a + b – b =

10a + b – 10n+1 =

(an – 1)10n+1 + [Σj=1n(bj + aj-1)10j ]+ (b0 )

Expresando el algoritmo en python:

def x9(number):
previous = number%10
result = 10 - previous
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
result =
(9 - digit + previous ) *
power_of_10 + result
previous = digit
power_of_10 *= 10
number = number // 10
result =
(previous-1) * power_of_10 +
result
return result

Multiplicación por 8

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

tenemos

(8)a = 10a –2a =

10a –2a +2 b – 2b =

10a + 2b – (2)10n+1 =

(an – 2)10n+1 + [Σj=1n(2bj + aj-1)10j ]+ (2b0 )

Expresando el algoritmo en python:

def x8(number):
previous = number%10
result = 2*(10 - previous)
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
result =
(2*(9 - digit) + previous ) *
power_of_10 + result
previous = digit
power_of_10 *= 10
number = number // 10
result =
(previous-2) *
power_of_10 + result
return result

Multiplicación por 3 y por 4

Los algoritmos para multiplicar por 3 y por 4 combinan las ideas usadas en la multiplicación por 5 y por 9.

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

ai = 2ci + di, donde

ci = ai/2

di = ai mod 2

tenemos

(4)a = 5a –a =

10c + 5d + b – 10n+1

(3)a = 5a –2a =

10c + + 5d + 2b – (2)10n+1

Expresando los algoritmos en python:

def x3(number):
digit = number%10
result = 2*(10 - digit)
if digit % 2:
result += 5
previous = digit // 2
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result +=(2*(9 - digit) + odd_term + previous ) * power_of_10
previous = digit//2
power_of_10 *= 10
number = number // 10
result = (previous-2) * power_of_10 + result
return result

def x4(number):
digit = number%10
result = (10 - digit)
if digit % 2:
result += 5
previous = digit // 2
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result +=((9 - digit) + odd_term + previous ) * power_of_10
previous = digit//2
power_of_10 *= 10
number = number // 10
result = (previous-1) * power_of_10 + result
return result

Referencias

La búsqueda de número primos

La búsqueda de número primos (GIMPS Home Page).

Inclusive hay recompensa económica para motivar el desarrollo de esta tecnología a través de EFF Cooperative Computing Awards para el que encuentre primero:

$50,000 por el primer número primo con más de 1,000,000 dígitos decimales ( Apr. 6, 2000)
$100,000 por el primer número primo con más de 10,000,000 dígitos decimales
$150,000 por el primer número primo con más de 100,000,000 dígitos decimales
$250,000 por el primer número primo con más de 1,000,000,000 dígitos decimales

Actualmente el primo más grande que se conoce es el primo Mersenne 44, 232,582,657-1, un número de 9,808,358 digitos así que el premio de los 100,000 dolares pudiera estar cerca.

¿Se podrá hacer algo mejor con tu PC que correr screen savers y tenerla esperando a que teclees la siguiente letra?


El número 7

7

El número 7 es un numero relacionado con el ciclo primario universal.

El ciclo lunar es de 28 días. Los factores primos de 28 son 7 y 2 y por lo tanto la mitad de la mitad del mes (semana) tiene 7 días.

Los planetas, las estrellas errantes en un universo estático y perfecto son 7: El Sol, la Luna, Marte, Mercurio, Venus, Júpiter y Saturno.

Al jugar con dos dados de seis caras, 7 es la suma más probable.

Referencias